Hilbert’s Nullstellensatz

نویسنده

  • DRAGOS OPREA
چکیده

Let k be an algebraically closed field. We will employ the following notation. If I ⊂ k[X1, . . . , Xn] is an ideal, we let Z(I) denote the affine algebraic set in An defined by the vanishing of the polynomials in I . Conversely, if X is an affine algebraic set, I(X) denotes the ideal of polynomials in k[X1, . . . , Xn] vanishing on X . We will give a proof of the following result, called the weak Nullstellensatz:

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combinatorial Nullstellensatz

The Combinatorial Nullstellensatz is a theorem about the roots of a polynomial. It is related to Hilbert’s Nullstellensatz. Established in 1996 by Alon et al. [4] and generalized in 1999 by Alon [2], the Combinatorial Nullstellensatz is a powerful tool that allows the use of polynomials to solve problems in number theory and graph theory. This article introduces the Combinatorial Nullstellensat...

متن کامل

Nullstellensatz and Skolem Properties for Integer-valued Polynomials

Skolem and Nullstellensatz properties are analogues of the weak Nullstellensatz and Hilbert’s Nullstellensatz, respectively, for the ring of integervalued polynomials in several indeterminates Int(D) = {f ∈ K[x1, . . . , xn] | f(D) ⊆ D}, where D is a domain and K its quotient field. We show their equivalence when D is a Noetherian domain and extend the criterion of Brizolis and Chabert for Int(...

متن کامل

Invariant Theory of a Class of Infinite-Dimensional Groups

The representation theory of a class of infinite-dimensional groups which are inductive limits of inductive systems of linear algebraic groups leads to a new invariant theory. In this article, we develop a coherent and comprehensive invariant theory of inductive limits of groups acting on inverse limits of modules, rings, or algebras. In this context, the Fundamental Theorem of the Invariant Th...

متن کامل

Model Theory for Algebraic Geometry

We demonstrate how several problems of algebraic geometry, i.e. Ax-Grothendieck, Hilbert’s Nullstellensatz, NoetherOstrowski, and Hilbert’s 17th problem, have simple proofs when approached from using model theory. The proofs use two general transfer principles. The first is the Lefschetz principle, which allows sentences that are true in algebraically closed fields of infinitely many prime char...

متن کامل

Linear Gaps Between Degrees for the Polynomial Calculus Modulo Distinct Primes (Abstract)

Two important algebraic proof systems are the Nullstellensatz system [1] and the polynomial calculus [2] (also called the Gröbner system). The Nullstellensatz system is a propositional proof system based on Hilbert’s Nullstellensatz, and the polynomial calculus (PC) is a proof system which allows derivations of polynomials, over some £eld. The complexity of a proof in these systems is measured ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008